Exercise 32

Suppose $f(\pi / 3)=4$ and $f^{\prime}(\pi / 3)=-2$, and let $g(x)=f(x) \sin x$ and $h(x)=(\cos x) / f(x)$. Find
(a) $g^{\prime}(\pi / 3)$
(b) $h^{\prime}(\pi / 3)$

Solution

Differentiate $g(x)$ by using the product rule.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}[g(x)] \\
& =\frac{d}{d x}[f(x) \sin x] \\
& =f^{\prime}(x) \sin x+f(x)\left[\frac{d}{d x}(\sin x)\right] \\
& =f^{\prime}(x) \sin x+f(x) \cos x
\end{aligned}
$$

Evaluate it at $\pi / 3$.

$$
g^{\prime}\left(\frac{\pi}{3}\right)=f^{\prime}\left(\frac{\pi}{3}\right) \sin \frac{\pi}{3}+f\left(\frac{\pi}{3}\right) \cos \frac{\pi}{3}=(-2)\left(\frac{\sqrt{3}}{2}\right)+(4)\left(\frac{1}{2}\right)=2-\sqrt{3}
$$

Differentiate $h(x)$ with the quotient rule.

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}[h(x)] \\
& =\frac{d}{d x}\left[\frac{\cos x}{f(x)}\right] \\
& =\frac{\left[\frac{d}{d x}(\cos x)\right] f(x)-\left[\frac{d}{d x} f(x)\right] \cos x}{[f(x)]^{2}} \\
& =\frac{(-\sin x) f(x)-f^{\prime}(x) \cos x}{[f(x)]^{2}} \\
& =-\frac{f(x) \sin x+f^{\prime}(x) \cos x}{[f(x)]^{2}}
\end{aligned}
$$

Evaluate it at $\pi / 3$.

$$
h^{\prime}\left(\frac{\pi}{3}\right)=-\frac{f\left(\frac{\pi}{3}\right) \sin \frac{\pi}{3}+f^{\prime}\left(\frac{\pi}{3}\right) \cos \frac{\pi}{3}}{\left[f\left(\frac{\pi}{3}\right)\right]^{2}}=-\frac{(4)\left(\frac{\sqrt{3}}{2}\right)+(-2)\left(\frac{1}{2}\right)}{(4)^{2}}=-\frac{2 \sqrt{3}-1}{16}
$$

